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Abstract - Research is now underway to create a
vision system for hardwood log inspection using a
knowledge-based approach. In this paper, we present
rule-based, 3-d vision system for locating and iden-
tifying wood defects using topological, geometric,
Statistical attributes. A number of different fea-
ures can be derived from the 3-d input scenes. These
features and evidence functions are used to compute
confidence values for object membership in different
defect classes. We will illustrate the use of differ-
ent knowledge sources in a set of independent and
concise rules.

. Introduction

A computer vision system for automatically pro-
cessing hardwood logs is intended to help the hard-
wood sawmill industry automate, reduce costs, and
increase product volume and value recovery. A key
to the success of this work is the ability to automate
the detection of defects inside logs. Defects must be
located, properly sized, and identified. Other com-
puter programs are needed to grade the logs and de-
termine the possible board cuttings from the logs.

Knowledge of log defects is critical to the pri-
mary breakdown of hardwoods. Tree-length round-
wood, hauled to the mill from the forest, may need
to be cut prior to further processing into lumber or
veneer. With internal defect information, it becomes
possible to cut roundwood so that defects are re-
moved from the log or isolated at either end. This
leaves larger areas of valuable clear wood in the log,
gives it higher value. Next, a sawmill operator
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must decide whet her to process a log as veneer or
as lumber. Logs or lengths of a log can be identi-
fied as veneer quality; utilization as veneer can in-
crease log value by a factor of 10. In processing a
sawlog, positioning of the log is important for pro-
ducing boards with as much defect-free surface as
possible. In recent years, several computer vision
systems have been developed to inspect lumber and
logs in the forest products industry [2][3][4].

A nondestructive way of inferring the internal
structure of a three-dimensional object, such as a log,
is to use Computerized Tomography (CT) to calcu-
late the attenuation of each small volume of the log to
x-ray transmission. CT imaging of a hardwood log
along its length produces a stack of cross-sectional
slices representing the three- dimensional structure of
the log. The image value at each pixel is called the
CT number. Because x-ray attenuation is dependent
on material density, CT numbers represent density
measurements of the wood structure in a log.

Our vision system consists of two basic modules:
a low-level module and a high-level module. The
low-level module performs the tasks of image filter-
ing, segmentation, and region detection and merg-
ing. A 3-d labeling procedure transforms 2-d regions
from segmentation into 3-d objects. The high-level
module conducts defect recognition of these 3-d ob-
jects using a rule-based approach. For a more in-
depth presentation of the low-level module compo-
nents, such as image smoothing, segmentation, and
region merging, readers are referred to [7][8]. This
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paper addresses 3-d labeling, and also defect recog-
nition using a rule-based approach. In particular,
we discuss: (1) grouping connected 2-d regions on
a sequence of CT slices into an integral 3-d volume,
(2) selecting image features for the defect recogni-
tion stage, (3) computing the confidence values of a
defect, (5) organizing different features into a set of
independent and concise rules, and (5) applying this
set of rules to the recognition problem.

Il. Volume Growing by 3-D Labeling

Prior to 3-d object recognition, a sequence of
CT slices need to be segmented on a slice-by-slice
basis. This segmentation process produces a num-
ber of uniform regions on each image which, when
grouped together, represent the 3-d information of
different wood defects inside a log. Input to the 3-d
labeling procedure is a sequence of segmented images
generated from the segmentation component in the
low-level module [7]. A 3-d version of the connected
component labeling algorithm [6], called 3-d volume
growing, is adopted here to group individual 2-d re-
gions on different slices into 3-d integral objects.

Inside a log, defects manifest themselves in vary-
ing shapes. In 3-dimensions, a knot would appear
like a paraboloid, bark like a generalized cylinder, a
hole like a cylinder, and a split like a ribbon, etc. To
identify the proper 3-d volumes of potential defects,
pixels with similar CT attributes on a number of seg-
mented images are grouped into connected volumes,
according to 6- or 18-neighborhood connectiveness in
3-d.

The 3-d volume growing algorithm that is used
in the log inspection system is briefly described as
follows. Let x(i,j,k) denote an label assigned by
the segmentation process at a point (i,j) on the kth
slice from a sequence of S segmented images. When
raster scanning a sequence of images, a new image
label is given to each pixel of each image in the se-
guence. This new label is to identify the pixel as
a part of a 3-d entity. Because our primary goal
is to differentiate defects from clear wood and air,
we need not label wood and air. For this purpose,
a binarization process is adopted in which all de-
fect pixels are marked 1 and the remaining pixels
are marked 0. Let us denote the image label at
the current 3-d location by p, and those at the 3
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neighboring locations by a, b, and ¢ respectively, i e.,
p x(i,j,k), a x(i,j,k-1), b x(i,j-1,k), and
¢ = x(i-1,j,k). Our 3-dimensional labeling algo-
rithm can be expressed by the following algorithm:

A 3-D Volume Growing Algorithm

For each non-background pixel x(i,j,k) * O:

1. if a=b=c=0, a new volume is found and assign
p a new label.

2. if two of {a, b, ¢} are 0, assign p to the third non-
zero label.

3. if one of {a, b, c} is 0, then

3.1 if the other two neighbors have the same
label, assign p to that common label.

3.2 if these two have distinct labels, assign p
to the label of one of them, MERGE(2).

4. if none of {a, b, ¢} is 0, MERGE(3)

In the above algorithm, procedure MERGE(N),
where n is an integer number, is a subroutine in
which the n individual volumes are merged into one
integral 3-dimensional entity. To facilitate this merge
operation, a tree data structure is created for each
object and the labels of the n volumes are stored un-
der the same tree. In this way, all the 3-d volumes
that are connected but have different labels will be
merged into the same volume representing a 3-d ob-
ject.

In practice, we only need to be able to detect
those defects that have a significant volume. De-
fects smaller than a certain volume are discarded
and treated like clear wood. For this purpose, an
integer value is preset as a threshold for volume
size against which all the labeled volumes are to be
compared. Any volume of a size smaller than this
threshold value is eliminated by merging it with its
nearest neighboring volume or merging it with the
background. This merging process usually eliminates
false defects resulted from segmentation, and retains
the well-connected 3-d objects as defects, such as
knots, bark, splits, decays and holes. Output from



this 3-d volume growing algorithm is a number of 3-
d objects that are to be recognized by the high-level
module discussed in the next section.

I1l. Rule-Based Object Recognition

Any defect type can manifest itself in many dif-
ferent ways. For example, knots represent a single
type of defect; however, their shape, density, size,
and orientation can vary greatly. Consequently, sta-
tistical or analytical classification procedures are dif-
ficult to implement successfully. Less exacting meth-
ods, therefore, may be better suited to this type
of problem. A heuristic, rule-based recognition sys-
tem was used by [2] to identify defects in sawn lum-
ber. Rule-based systems are flexible in that special
rules can be written to handle exceptions [1]. For
these reasons, the machine vision system under study
adopts a rule-based approach to perform 3-d object
recognition.

A. Feature Selection

For each of the 3-d volumes detected by the
above volume growing process, statistical, geomet-
ric, and topological features are readily computed
from the 3-d image data. Currently, 5 basic fea-
tures have been derived to enhance the separability
of bark, knots, and clear wood. Additional features
can be added to the system as other defects need to
be recognized or as current defects need to be distin-
guished better. The following are brief descriptions
of the object features that may be computed from a
sequence of images:

(1) The mean value (MEAN)- This feature is
obtained by finding the mean CT values for all pixels
contained in a volume. Because bark and knots have
higher absorption rates than clear wood, this is an
important feature to identify defects.

(2) The variance value (VAR)- Sample variance
of a volume is calculated as in the calculation of
MEAN above. This is a useful feature to distinguish
bark from knots because they have different variance
values.

(3) The minimum distance (DIST)- This is
taken as the distance from the centroid of a volume
to the Z-axis. Bark (except for included bark pocket)
is a great distance away from the center (Z-axis) of

the log, therefore, it has a large DIST value. Clear
wood is near the center of the log, and it has a small
DIST. Therefore, this is a good feature to identify
bark.

(4) The predictor (TOUCH)- This is a binary
predictor with value 1 or 0. Value 1 (0) indicates
a volume touching (not touching) the background
(air). Since knots usually do not touch air, this is
a good feature to differentiate knots from other ob-
jects.

(5) The volume (VOLM)- This is the 3-d volume
occupied by an object. Clear wood has a much larger
volume than any other objects in a log. Splits and
holes usually have a small volume. Therefore, this is
a good feature to distinguish clear wood from defects,
and splits and holes from the remaining defects.

B. Computing Confidence Values

Each object has a confidence vector to describe
the belief that the object belongs to each defect cat-
egory. From the population distribution of a given
feature, we can derive threshold values that separate
the population of values for that feature into discrete
classes. To properly define ranges on the feature dis-
tributions for different linguistic qualifiers, a group of
threshold values are determined using a set of train-
ing data. Threshold values are visually determined
by the peaks and valleys on the histograms of indi-
vidual features. Linguistic qualifiers, such as “high”
and “low”, label these classes. An evidence function,
expressed as a discrete or continuous step-type func-
tion, can be used to relate linguistic qualifiers and
levels of evidence for various defects. Fig. 1 shows
three examples of such evidence functions f(v) for
feature v = VAR for the defects bark, knots, and
clear wood. According to these step-type functions,
a linguistic qualifier L (for Low), M (for Medium),
or H (for High) is associated with ranges of values
of the feature variable v. Here T1 and T2 are two
thresholding values obtained from a histogram of the
feature v. For each feature value computed from im-
age data, such functions assign individual values to
the confidence vector for a candidate volume. This is
in fact a voting process where a higher vote is given
to the strong evidence and a lower vote to the weak
one.
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C. Recognition Method

To use prior knowledge about different cate-
gories of defects to classify a candidate object, a
correspondence must be established between the lin-
guistic qualifiers and possible defect manifestations
within a log. A production system or rule-based ap-
proach is adopted since it easily implements this type
of reasoning. There are many ways to combine fea-
ture values and decision paradigms to make rules.
Antecedent conditions could refer to the value of a
single feature, the values of all the features, or the
values of some subset of the features. The conse-
guent action could make a decision on membership
or non-membership in a class, or simply contribute
evidence to that decision.

In our approach, a production system with sim-
ple conditions was built; each rule considers one basic
feature. The action of a rule is to contribute posi-
tive evidence (1.0) to classes in which the feature
is usually present, negative evidence (-1.0) to those
in which it is usually absent, and no evidence (0.0)
to the rest. To accommodate situations where the
feature is present occasionally and absent at other
times, half evidence (0.5 or -0.5) is contributed to
the classes. The rules in a production system are of
the following form

IF (conditions) THEN (actions).

In implementing rules, individual rules are
grouped into conjunctive rules, where the action part
contains several confidence value assignments. As an
example, the conjunctive rule Rule_Touch using fea-
ture TOUCH is expressed as

Rule_Touch: vote to 3 classes by feature TOUCH

if(touch(k)=1) then (“touching”)
cv(touch, bark) = 1.0

cv(touch, knot) = -0.5

cv(touch, wood) = 0.5

else if(touch(k)=0) then (“not touching”)

cv(touch, bark) = 0.5
cv(touch, knot) = 1.0
cv(touch, wood) = -0.5

In this rule, variable touch(k) is the TOUCH
feature value of the kth volume, and cv(touch, bark),
cv(touch, knot), and cv(touch, wood) represent the
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confidence values assigned by rule Rule-Touch to
bark, knots, and clear wood, respectively. This rule
provides strong positive evidence (1.0) for bark that
touches the background, whereas it provides weak
negative evidence (-0.5) against a knot that touches
the background.

After applying all 5 rules to a candidate volume,
a matrix of confidence values cv(i,j), (i = 1, 2,...,
5, j =1, 2, 3.) are generated. The total vote for
an object, denoted by TV(j), is the total confidence
value obtained by adding up all the confidence values
assigned to the object by all 5 rules. For an expert
system comprised of N, rules, this total vote can be
expressed as

N.
V() =Y cv(i, j),
i=1

In our case, N, the number of rules, is equal to 5.
The class with the highest total vote is designated
as the class to which the object belongs. The next
section shows some experimental results of applying
these rules to CT images taken from a hardwood log.

IV. Experimental Results

The method described in this report was applied
to recognize CT images taken from a hardwood log
that contained bark, knots, and clear wood. The
original 12-bit images were 256 x 256 with pixel res-
olutions 8.0mm between slices and 2.5mm within a
slice. After 3-d smoothing, images were segmented
one by one, and the connected components on all
slices were grouped together to produce a number of
3-d volumes of unknown defect type.

A small set of CT slices were selected from a
sequence of the log images as the training data. Fea-
ture distributions computed from this training set
defined a set of thresholding values that were used
to determine the linguistic qualifiers of the feature
values. Rules were then applied to individual candi-
date volumes to assign confidence values to different
defect classes. Adding up the confidence values con-
tributed to a volume by all rules, the object was as-
signed the class that had the highest total confidence
value.

Two experiments were conducted using the
above approach to recognize wood defects inside a



yellow poplar log. The first experiment was per-
formed with 4 training images (slice No. 2 through
slice No. 5 of log YPO1). In this experiment, all
defects and clear wood were correctly recognized by
our 3-3 vision system. In the second experiment, a
sequence of 4 images from the same log (slice No.
21 through slice No. 24 of log YPO1) were used as
testing samples. Threshold values that were derived
in the first experiment were used as thresholds here.
As in the first experiment, all classes of objects were
correctly recognized. Fig. 2 to Fig. 4 show the re-
sults of processing 4 images in the first experiment.
Fig. 2 shows the original CT images of these 4 slices
which contain bark, knots, and clear wood. Fig. 3
demonstrates the results of image segmentation. Fi-
nally, Fig. 4 contains the results of applying the 3-d
volume growing algorithm to this sequence of seg-
mented images. On reviewing Fig. 3 and Fig. 4,
it is clear that two pieces of bark and one knot have
been detected, and that the clear wood and the back-
ground (air) are also correctly differentiated from the
defects.

V. Summary and Discussion

In this paper we have presented a rule-based 3-d
vision system for automatic log inspection using com-
puterized tomography imagery. We have described
several image features, that can be derived from the
input image sequence and are capable of handling
different aspects of the log defect recognition prob-
lem. We have also presented a way of computing
confidence values for membership in different defect
classes using the population distributions of various
features. Finally we have described how 3-d object
attributes can be encoded in a set of simple rules and
used to recognize defects.

The main advantage of this simple system is
that it is repeatable without intra- and inter-observer
variability. The rules can be used in many different
ways. A simple voting scheme is chosen for the vi-
sion system because the decision-making process is
easily understood and debugging is simplified. How-
ever, deciding the magnitude of the vote is as diffi-
cult as determining a prior probability vector in the
statistical pattern recognition method. Combining
domain independent low-level image heuristics with
domain-specific heuristics in a high-level module cre-
ates a very general recognition mechanism, one that

can handle different wood species in automatic log
inspection.

Our aim here is to demonstrate useful and flex-
ible approach that addresses some aspects of the vi-
sion problem. As an example, we have taken CT log
images and shown some image features that could
be extracted and simple rules that could be formu-
lated to obtain a conceptually feasible inspection sys-
tem. Clearly, rule-based systems are problem spe-
cific. Therefore the rules presented in this paper need
to be augmented and fine-tuned in order to accom-
modate more complicated log defects and to make
the rules more robust. Nevertheless, the proposed
rule-based approach to the machine vision problem
seems promising; and a relatively inexpensive, accu-
rate, and fast vision system for hardwood log inspec-
tion seems possible.
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Fig. 1 An evidence function f(v) relates discretized values (L, M, H) for feature v = VAR with evidence
values for the defect bark (a). Knots (b) and clear wood (c) have different evidene functions. The
threshold values, T1 and T2, were established from the distribution of VAR values.

Fig. 2 (From left to right) Original CT images of slices 2, 3, 4, and 5 from a yellow poplar log.

Fig. 3 Segmentation results of the images in Fig. 2 using multi-thresholds.

Fig. 4 Two barks and a knot detected from the image sequence in Fig. 3 by 3-d volume growing.
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